マテリアルDXを実践するために最適な入門書!
本書はPythonを使ったマテリアルズインフォマティクスの方法を習得するため、1.scikit-learnの使い方を学ぶ、2.プログラミングによるデータ解析手法を知る、3.帰納法の考え方に慣れる、という三つの目的から構成されています。データ解析学で用いるアルゴリズムは各データを記述する変数の数が等しい(等長説明変数)と仮定しているため、マテリアルズインフォマティクスの世界では苦戦する場面が少なくありません。そこで物質ごとに収集できる変数の数が異なる(非等長説明変数)場合のデータ解析の仕方を紹介しており、基礎から実践までをじっくりと理解できる内容となっています。
【目次】
第1章 理論編
1.1 予測問題
1.2 データ解析学手法の紹介
1.3 回帰・分類モデルの性能評価
1.4 データ解析学手法の四過程
1.5 説明変数の特徴の見い出し方
1.6 予測問題(再び)
1.7 新帰納法の世界
1.8 新帰納法のフローチャート
第2章 準備編
2.1 可視化可能なPythonインタラクティブ環境
2.2 Python環境のインストール
2.3 サンプルスクリプトとデータファイルの取得とインストール
2.4 物質データ
2.5 事前準備
第3章 基礎編
3.1 はじめに
3.2 回帰
3.3 次元圧縮
3.4 分類
3.5 クラスタリング
第4章 応用編1(等長説明変数)
4.1 はじめに
4.2 次元圧縮を併用したクラスタリング
4.3 トモグラフ像の復元
4.4 説明変数重要性の定量評価
4.5 モデル全探索による回帰モデル評価
4.6 ベイズ最適化
4.7 次元圧縮を利用した推薦システム
第5章 応用編2(非等長説明変数)
5.1 はじめに
5.2 頻出パターンマイニング
5.3 証拠理論
付録A
(C)2022 Hiori Kino, Hieu-Chi Dam. All rights reserved.
付与コインの内訳
30コイン
会員ランク(今月ランクなし)
1%
複数商品の購入で付与コイン数に変動があります。
クーポンご利用時はキャンペーンコイン付与の対象外です。
詳しくは決済ページにてご確認ください。
会員ランクの付与率は購入処理完了時の会員ランクに基づきます。
そのため、現在表示中の付与率から変わる場合があります。