セーフサーチ設定を変更しました
ページの先頭です

『機械学習実践(実用)』の電子書籍一覧

1 ~2件目/全2件

  • シリーズ2冊
    3,850(税込)
    著者:
    高島 遼一
    レーベル: 機械学習実践

    音声認識の基礎から最新手法までを解説

    「音声認識」とは、音声信号から発話内容を認識することで、AIスピーカなどに利用されている技術です。本書は、現在までの音声認識技術の発展経緯を学びながら、深層学習を用いた最新の音声認識システムを実装できるようになることを目的としています。まず手法の目的やアルゴリズムの概要を解説し、続いて数式レベルでの詳説、最後にソースコード付きで実装という流れで解説しています。特に手法の概要については「そもそもその手法は何を目的として生み出されたのか」という経緯と、「なぜその手法は前述の目的を達成できるのか」について直感的に理解できるよう工夫しています。本書は中級者以上に向けた、特定の技術分野のアルゴリズムの紹介と、それを実装したコードを解説する、より技術的・実践的な「機械学習実践シリーズ」です。
  • 音源分離の基礎から実装までを一冊に凝縮

    中級者以上に向けた、特定の技術分野のアルゴリズムの紹介と、そのアルゴリズムを実装したコードを解説する、より技術的・実践的な「機械学習実践シリーズ」の1冊目として、「音源分離」をテーマとしています。近年、AIスピーカをはじめとした、人が話した音声を理解する音声認識システムがさまざまな場面で使われています。一般的に音声認識システムは、1人の人の声を聞き取ることを想定しており、聞きたい人の声以外の音が入ってくると、どうしても聞きたい人の声を正確に聞き取ることが難しくなります。「音源分離」とはこのようにさまざまな音が混ざった中から、欲しい音だけを抽出するという技術です。本書では、音源分離の基礎から、Pythonを用いた実装までを詳しく解説しています。また、音源分離で用いる数学的知識の基礎として、線形代数や行列・ベクトルの微分の方法、確率統計の基礎について示しています。音源分離を理解しコードを書くためには、プログラミングに関する知識はもちろん、線形代数、微分積分、確率・統計といった数学的知識も必要不可欠です。とくに音源分離では複素数の行列・ベクトルを用いるので、複素数の計算方法について重点的に示しています。

・キャンペーンの内容や期間は予告なく変更する場合があります。
・コインUP表示がある場合、ご購入時に付与されるキャンペーン分のコインは期間限定コインです。詳しくはこちら
・決済時に商品の合計税抜金額に対して課税するため、作品詳細ページの表示価格と差が生じる場合がございます。

ページ先頭へ

本を予約しました

※予約の確認・解除はこちらから

予約済み書籍

キャンセル及び解除等

発売日前日以降のキャンセル・返品等はできません。
予約の確認・解除、お支払いモード、その他注意事項は予約済み書籍一覧をご確認ください。