まずは、無料で試し読み
34ページ読める
無料アプリで今すぐ読書
パソコンはブラウザビューアで簡単に読書できます
BOOK☆WALKERでデジタルで読書を始めよう。
BOOK☆WALKERではパソコン、スマートフォン、タブレットで電子書籍をお楽しみいただけます。
-
パソコンの場合
ブラウザビューアで読書できます。
-
iPhone/iPadの場合
詳しくはこちら
-
Androidの場合
詳しくはこちら
購入した電子書籍は(無料本でもOK!)いつでもどこでも読める!
深層学習 改訂第2版 あらすじ・内容
-
◆ベストセラーの改訂版。最高最強のバイブルが大幅にパワーアップ!!◆
・トランスフォーマー、グラフニューラルネットワーク、生成モデルなどをはじめ、各手法を大幅に加筆。
・深層学習のさまざまな課題と、その対策についても詳しく解説。
[本書まえがきより抜粋]
ないもの(=理論)ねだりをしても仕方がありません.それでも皆が研究を進めるのは,そうすることに意義があるからです.なぜうまく働くのか,なぜそうすべきか,数学的な証明はなくても,正しい説明は必ずあるはずです.それを手にできれば,目の前の課題を解決するのに,また次に進むべき道を知るうえで役に立つでしょう.
そこで本書では,それぞれの方法について,今の時点で最も納得できる説明をきちんと与えることにこだわりました.名前の通った方法であっても,理屈が成り立たない,あるいは役に立たない方法や考え方については,はっきりそう書きました.著者の主観といわれても仕方がない場合もあるかもしれませんが,そのほうが有益であると信じています.
また,現在の深層学習の広がりを把握できるように,定番となった問題・方法に加えて,重要だと思われる問題については,必ずしもそれほど有名でない方法も含めてなるべく網羅するようにしました.その取捨選択には,深層学習が実践的技術であることを踏まえ,実用性を最も重視しました.そこには,この間に著者が企業の実務家たちと行ってきた共同研究での経験が反映されています.
[主な内容]
第1章 はじめに
第2章 ネットワークの基本構造
第3章 確率的勾配降下法
第4章 誤差逆伝播法
第5章 畳み込みニューラルネットワーク
第6章 系列データのためのネットワーク
第7章 集合・グラフのためのネットワークと注意機構
第8章 推論の信頼性
第9章 説明と可視化
第10章 いろいろな学習方法
第11章 データが少ない場合の学習
第12章 生成モデル
「深層学習 改訂第2版(機械学習プロフェッショナルシリーズ)」最新刊
「深層学習 改訂第2版(機械学習プロフェッショナルシリーズ)」の作品情報
- レーベル
- 機械学習プロフェッショナルシリーズ
- 出版社
- 講談社
- ジャンル
- 実用 学問
- ページ数
- 592ページ (深層学習 改訂第2版)
- 配信開始日
- 2022年9月2日 (深層学習 改訂第2版)
- 対応端末
-
- PCブラウザ
ビューア - Android
(スマホ/タブレット) - iPhone / iPad
- PCブラウザ
◆ベストセラーの改訂版。最高最強のバイブルが大幅にパワーアップ!!◆
・トランスフォーマー、グラフニューラルネットワーク、生成モデルなどをはじめ、各手法を大幅に加筆。
・深層学習のさまざまな課題と、その対策についても詳しく解説。
[本書まえがきより抜粋]
ないもの(=理論)ねだりをしても仕方がありません.それでも皆が研究を進めるのは,そうすることに意義があるからです.なぜうまく働くのか,なぜそうすべきか,数学的な証明はなくても,正しい説明は必ずあるはずです.それを手にできれば,目の前の課題を解決するのに,また次に進むべき道を知るうえで役に立つでしょう.
そこで本書では,それぞれの方法について,今の時点で最も納得できる説明をきちんと与えることにこだわりました.名前の通った方法であっても,理屈が成り立たない,あるいは役に立たない方法や考え方については,はっきりそう書きました.著者の主観といわれても仕方がない場合もあるかもしれませんが,そのほうが有益であると信じています.
また,現在の深層学習の広がりを把握できるように,定番となった問題・方法に加えて,重要だと思われる問題については,必ずしもそれほど有名でない方法も含めてなるべく網羅するようにしました.その取捨選択には,深層学習が実践的技術であることを踏まえ,実用性を最も重視しました.そこには,この間に著者が企業の実務家たちと行ってきた共同研究での経験が反映されています.
[主な内容]
第1章 はじめに
第2章 ネットワークの基本構造
第3章 確率的勾配降下法
第4章 誤差逆伝播法
第5章 畳み込みニューラルネットワーク
第6章 系列データのためのネットワーク
第7章 集合・グラフのためのネットワークと注意機構
第8章 推論の信頼性
第9章 説明と可視化
第10章 いろいろな学習方法
第11章 データが少ない場合の学習
第12章 生成モデル